

Finding the Maximum Flow Rate of an Existing System (When an accurate flow meter is not installed)

Preparation:

- Open all valves to their full open position for pool or spa circulation. 1.
- Remove Eye-ball fittings from Return Inlets (if applicable) 2.
- Clean Skimmer and Pump Baskets 3.
- Backwash or Clean Filter 4.

Method 1: Measure using a 5 gallon Bucket and	Method 2: Calculate using pressure and vacuum
stopwatch 1. If necessary, using known 1 gallon or smaller	gage readings (see figure 1) 1. Install a vacuum gage as close to the bottom of the
containers, fill a 5 gallon bucket with exactly 5 gallons of	strainer basket as possible
water and mark a line on the inside of the bucket at the	2. Install a pressure gage as close to the pump
water level	discharge as possible
2. Turn on pump and operate until it is running with a	NOTE: It may be necessary to use a ¼" NPT x Barb
full prime.	fitting with a short section of plastic tubing connected
3. Using the backwash valve or waste valve and	to a gage if gages cannot be screwed into drain holes provided in pump.
stopwatch record seconds required to fill the 5 gallon	3. Multiply Vacuum reading by 1.13 and record
bucket to the line previously established. 4. Divide 60 by the number of seconds established	reading
above and multiply the result by 5. This will give you the	4. Multiply Pressure reading by 2.31 and record
maximum possible GPM of the system.	reading
5. Repeat Test several times to verify results.	5. Add results of step 3 and 4 together to get the
	approximate Total Dynamic Head (TDH) in feet of
EXAMPLE : If it takes 10 seconds to fill a 5 gallon	water.
bucket,	6. Using the published curve for the pump find the
the GPM flow rate would be:	Total Dynamic Head calculated above on the vertical axis and read the flow rate on the horizontal axis
(60 seconds per minute /10 seconds) x 5 gallons = 30	7. This will give you the maximum flow rate within
Gallons per Minute	approximately 10%
Method 3: Use the maximum pump flow rate specified	Pressure Head: Gage PSI x 2.31 = Feet of Water
by the manufacturer.	Suction Head: Gage "Hg x 1.13 = Feet of Water
Gravity Flow Calculation	EXAMPLE: If the Pressure Gage reads 14 PSI and the
$[1786 \times [D(inch)]^5 \times H(inch)]$	Vacuum Gage reads 6 " inches of mercury (Hg)
Flow(gpm) = $\sqrt{\frac{1786 \text{ x } [\text{D}(inch)]^5 \text{ x } \text{H}(inch)}{\text{L}(inch)}}$	the approximate Total Dynamic Head (TDH) of the
L(inch)	system would be 39.12 feet
Example: Gravity flow through 2" IPS Schedule 40 PVC	
pipe with inside diameter 2.067" with 32.0 feet of pipe	
and 2 elbows of equivalent length of 6.0 feet. The top of	
the pipe opening into the collector tank is 8" below pool	
water level.	14 psi
The flow (Q) in <i>gpm</i> is	6" Hg 🦳
	ł
$Q = \sqrt{\frac{1786 \times 2.067^5 \times 8}{[32 + (2 \times 6)] \times 12}}$	When inspecting existing installations, the maximum
$V = \sqrt{\frac{1}{22} + \frac{2}{2} + \frac{2}{2}}$	possible flow rate of the suction system must be
$\int \int \left[\frac{32 + (2 \times 0)}{12} \right] \times 12$	determined as explained in this checklist and in ANSI/
0 21.05	APSP-7 Standard for Suction Entrapment Avoidance in Swimming Pools, Wading Pools, Spas, Hot Tubs, and
Q=31.95 <i>gpm</i>	Catch Basins.
© 2006 The Association of Pool & Spa Professionals. All rights reserved.	

-FOLD